
3D Java Game Programming – Episode 2

1

Building a Java First-Person Shooter

Episode 2 [Last update: 4/30/2017]

Objectives

This episode adds the basic elements of our game loop to the program. In addition, it introduces the

concept of threads.

Video URL

https://www.youtube.com/watch?v=0zuVHDNYPQU

Discussion

STEP 1:

Copy the Episode_01 Java project to a new one titled EPISODE_02.

STEP 2:

Close the project EPISODE _01

The following instructions and programs will all be in EPISODE_02.

Figure 1 - Eclipse Workspace setup

What are Threads?

“The term thread is shorthand for thread of control, and a thread of control is, at its simplest, a section

of code executed independently of other threads of control within a single program.”1

The notion of threading is “so ingrained in Java” that even our most basic and simple programs use it

without our being aware of it. We should be accustomed to starting our Java programs by having the

operating systems invoke our main() method. This starts your typical single-threaded application. A

Java program allows you to spawn off one or more threads that will run independently from the main

thread. In a Java program each thread will have the following properties:

1 This section is composed (stolen) from material in reference [1].

https://www.youtube.com/watch?v=0zuVHDNYPQU

3D Java Game Programming – Episode 2

2

 Each thread will begin execution at a predefined well-known location. You are of course familiar

with main() being the starting point of your application. You as a programmer get to decide

the starting point of the other threads you start up.

 Each thread executes code from its starting location in an ordered, predefined sequence (the a

given set of inputs)

 Each thread executes its code independently of the other threads in the program

Another thread that you know runs with your application is the garbage collector. But this thread is

created and managed by the Java Virtual Machine (JVM). When you build GUI applications you know

that the events (mouse click, keyboard entry, etc.) are all handled by another thread managed outside

your application code - Event Thread Dispatcher. You have to perform special actions to inform the

system that you want to handle certain events within your program. Another type of thread that you

don’t manage but work with is the paint() event. When your GUI application requires painting your

application has to implement or override special methods (e.g. paint() or paintComponent()) in

order to draw the game display. In these series of episodes we do not explicitly override the paint()

method to draw on the screen but it essentially gets done because we subclass components that do

invoke methods to refresh the screen.

Why do we need Threads in our game program?

Threading makes certain type of programs easier to construct. Dividing the program so that it can be

split into separate tasks allows us to create conceptually easier programs that coordinate the job the

application is trying to execute.

3D Java Game Programming – Episode 2

3

Threading Experience
My first experience with threading came up when I was asked to fix a problem a particular application
was having with respect to a bad user experience. The user used the application to manage different
router2 devices. The job of the application was to download to the selected device a configuration file.
The figure below shows you the setup.

Figure 2 - User connecting to router devices

Very often the router device the user selected was not yet available and the application when reaching
out to the device would wait several minutes (or at least the user reported it felt like several minutes)
before the application would return from the “download request” operation to report back to the user
that the operation failed because the router connection could not be established. The user knew that if
the application did not get a response from the router within 15 seconds that the router was not “up”
and available yet but the actual time was more like minutes because of the built-in timeout the network
connection software was set at. The application was originally written as a single-threaded application
its logic was something like this:

try {

 connectToRouter(ipAddressForRouter);

 downloadConfigurationFile();

} catch (ConnectionTimedOutException ctoe) {

 // give the user the bad news ….after waiting for several

 // minutes….what a waste of time!

}

The problem was in the connectToRouter() call. It would go off into the method trying to set up a
connection to the router and the code waited and waited and waited until the connection timed out
before returning with a connection timed out failure. The solution3 that I came up with (for what was
available at the time) was to execute the connectToRouter() in its own thread and if the thread
did not complete within a time limit that I set in some property file (15 seconds) than I would assume
the router was not available. I then continued program execution and reported the bad news to the

2 If you don’t know what a router is that is fine just imagine some black box that uses some file called configuration
file to figure out what to do.
3 There is a bit more about threads you will need to learn – I recommend the book “Java Threads” by Scott Oaks
and Henry Wong.

3D Java Game Programming – Episode 2

4

user in a more timely fashion. This was a great use of threading and the user’s time!

“The popularity of threading increased when graphical interfaces became the standard for desktop

computers because the threading system allowed the user to perceive better program performance.” In

a game we have at least two things we want it to do at the same time “manage the screen display” and

“execute the game loop.” In order to do this will require that we learn to create and manage threads.

The goal for our games programming is to create as few threads as possible but implement them we

must. The most important thread for our program at this time is the Event Dispatcher Thread. This is the

thread that handles events (e.g. mouse click, keyboard entry, etc.) You dictate which events you want

to handle in your program by specifying an event listener. This topic will be covered in a future episode.

Creating a Thread

There are two ways to create threads.

 Create a class that extends java.lang.Thread

 Create a class that implements the interface java.lang.Runnable

In both cases your class must define a method named run.

Table 1 - the Thread run() method

public void run() {
}

To terminate a thread just let the run() method exit.

Let’s recall that the main() method is also a thread that the operating systems starts. Let’s look at a

simple example.

STEP 3:

Create the class SimpleThreadExample01 in the test.examples package and run.

Table 2 - SimpleThreadExample01.java

public class SimpleThreadExample01 extends Thread {

 public void run() {
 for (int i = 0; i < 1000; i++)
 System.out.println("New thread executing " + i);
 }

 public static void main(String[] args) {
 SimpleThreadExample01 myThread = new SimpleThreadExample01();
 myThread.start();
 for (int i = 0; i < 50; i++) {

3D Java Game Programming – Episode 2

5

 System.out.println("Main thread executing " + i);
 }
 }

}

In the above code the main() method creates and starts its own thread myThread by invoking the

method start(). Invoking the start() method actually starts the execution of the run() method. In

the output you will see “New thread executing” messages mixed in with “Main thread executing”

messages. This demonstrates that the main() thread and myThread are running at the same time.

Since the machine is very fast each thread may print out many messages on the console before the

second thread is given the CPU or maybe your output looks like the one below.

Table 3 - Output from SimpleThreadExample01

New thread executing 212
Main thread executing 247
New thread executing 213
Main thread executing 248
New thread executing 214
Main thread executing 249
New thread executing 215
Main thread executing 250
New thread executing 216
Main thread executing 251
New thread executing 217
Main thread executing 252
New thread executing 218
Main thread executing 253

In our program the main thread and the new thread (myThread) are two separate processes that are

running. You can regard them as two separate programs running at the same time sharing the computer

resources. The operating system is designed to give each program and each thread within each program

a slice of the CPU to get work done. In our example, the work is being done through a for loop.

The second way to create and start a thread is by using the Runnable interface.

STEP 4:

Create and run the program SimpleThreadExample02.java shown below.

Table 4 - SimpleThreadExample02.java

public class SimpleThreadExample02 implements Runnable {

 @Override
 public void run() {
 for (int i = 0; i < 1000; i++)
 System.out.println("New thread executing " + i);

3D Java Game Programming – Episode 2

6

 }

 public static void main(String[] args) {
 SimpleThreadExample02 runner = new SimpleThreadExample02();
 Thread myThread2 = new Thread(runner);
 myThread2.start();
 for (int i = 0; i < 500; i++) {
 System.out.println("Main thread executing " + i);
 }
 }

}

The output for the program should be quite similar to the previous one. Note, that in the example above

we create a “runner” object based on our SimpleThreadExample02 class and provide the object as

an argument to the Thread constructor for our thread object myThread2. We invoke the run()

method of the thread the same way - by invoking the start() method of the thread.

To stop a thread you merely allow the run() method to exit. There are some deprecated methods in

the Thread class that you should not use. One deprecated method is the stop() method and the other

is the suspend() method.

In this episode we will use the second method. The video episode code is shown below:

Table 5 - Display.java (Episode 2)

package com.mime.minefront;

import java.awt.Canvas;
import javax.swing.JFrame;

public class Display extends Canvas implements Runnable{

 private static final long serialVersionUID = 1L;

 public static final int WIDTH = 800;
 public static final int HEIGHT = 600;
 public static final String TITLE = "Minefront Pre-Alpha 0.01";

 private Thread thread;
 private boolean running = false; // indicates if the game is running or not

 private void start() {
 if (running) {
 return;
 }

 running = true;
 thread = new Thread(this);
 thread.start();

3D Java Game Programming – Episode 2

7

 System.out.println("Working");
 }

 private void stop() {
 if (!running) {
 return;
 }
 running = false;
 try {
 thread.join();
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(0);
 }
 }

 @Override
 public void run() {
 while(running) {
 // play the game
 }

 }
 public static void main(String[] args) {
 Display game = new Display();
 JFrame frame = new JFrame();
 frame.add(game);
 frame.setTitle(TITLE);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(WIDTH, HEIGHT);
 frame.setLocationRelativeTo(null);
 frame.setResizable(false);
 frame.setVisible(true);

 System.out.println("Running...");

 game.start();
 }

}

The first change we made is to change our Display class to implement the Runnable interface. This

will require that we add a run() method. In the run() method will be our game loop.

What is the Game Loop?

The key area of your game engine or game program is the game loop. This is the where your core game

logic resides. It can be summarized as having the following structure:

3D Java Game Programming – Episode 2

8

while (!gameOver) {

 check for user Input

 run AI

 move enemies

 resolve collisions

 draw graphics

 play sounds

}

This loop repeats over and over again until the game is over by either the player winning or exiting the

game. In this episode we introduce the beginning of the game loop:

Table 6 – The game loop in our program

 public void run() {
 while(running) {
 // play the game
 }

 }

It is currently missing all the key elements we need for a real game but we plan on adding that later - the

start is there. The first thing that must be done is to set this up to run in its own thread…that is what this

episode is about.

At this time you don’t need to know much more about Threads and the code in this episode does not

use much more. When you start the main method of the program:

 public static void main(String[] args) {
 Display game = new Display();
 JFrame frame = new JFrame();
 frame.add(game);
 :
 :
 System.out.println("Running...");

 game.start();
 }

In the main() method the call to the game.start() method invokes the actual start() method

defined in the Display class (not some Thread’s run() method). How do we know this? Well, the

Display class does not extend the Thread class but implements the Runnable interface. The

example shown above shows that when a class implements the Runnable interface that somewhere in

3D Java Game Programming – Episode 2

9

the code that class is sent to the Thread constructor where a thread object is created. In our code that

is done in the Display start() method.

 private void start() {
 if (running) {
 return;
 }

 running = true;
 thread = new Thread(this);
 thread.start(); // here is where we invoke the Display’s run() method
 System.out.println("Working");
 }

It is in the start() method where the variable running is set to true (it used to indicate that the

game loop thread is running). The thread object is created (note how this is equal to the Display object)

and NOW the thread.start() will invoke Display’s run() method.

 @Override
 public void run() {
 while(running) {
 // play the game
 }

 }

It is worth repeating: The run() command is the heart and soul of your game and runs in its own

thread. There are other threads that you may not be aware of in this type of program - one would be

the garbage collector thread, the event dispatcher for when the user clicks the mouse, presses a key,

etc. and another thread is the one responsible for keeping the screen updated as users move the

window, minimize it, overlap it with other windows, or it gets updated in the run() method as missiles

explode and enemies disappear into the ether.

The author added a stop() method to this program but if you add a print statement to it you will see

that it is never called. So one would regard it at this time as being unnecessary4 and it could be easily

removed without changing existing functionality.

I think the stop() method was added in the case that the program is executed as a Java Applet. As a
Java Applet the program would be invoked externally (the applet container’s main() method). The
convention for Java Applets is that you implement the methods init() and start() that are
invoked by the browser when starting your applet. The browser will also call your applet stop()
method when your applet should stop execution. It makes sense to have the code we see in that
method:

4 It becomes useful when we create an applet version of the program in a future Episode but at this time Applets
are not easy or even possible to run on most Internet browsers.

3D Java Game Programming – Episode 2

10

 if (!running) {
 return;
 }
 running = false;
 try {
 thread.join();
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(0);
 }

If the game loop is not running then it must have reached the end of the game loop or in our case exited

the run() method. If not, the stop() method sets running to false which will eventually put an end
to the run() method game loop since that what determines staying in the loop:

 public void run() {
 while(running) {
 // play the game
 }

 }

The thread.join(); call is used to block execution at that point until the thread has completed its
run() method. So even after setting running = false; we have to wait until the thread executing the
game loop is given time on the cpu to actually determine it should stop! So we wait for it.

 One thing not mentioned but used in this program is that threads share global memory. In our case the

various threads running in our program can access and change the running variable. This is one way in

which they communicate with each other.

In summary, in this episode the game loop was created and set running in a thread of its own.

Additional Information

In the previous episode I presented a common technique to force the displayable game area to match

our desired WIDTH and HEIGHT using the method below:

 public void resizeToInternalSize(int internalWidth, int internalHeight) {
 Insets insets = getInsets();
 final int newWidth = internalWidth + insets.left + insets.right;
 final int newHeight = internalHeight + insets.top + insets.bottom;

 Runnable resize = new Runnable() {
 public void run() {
 setSize(newWidth, newHeight);
 }
 };

3D Java Game Programming – Episode 2

11

 if (SwingUtilities.isEventDispatchThread()) {
 try {
 SwingUtilities.invokeAndWait(resize);
 } catch (Exception e) {
 // ignore ...but will be no no if using Sonar!
 }
 } else {
 resize.run();
 }

 validate();
 }

The insets.left and insets.right refer to the border windows size in pixels on the left and right hand side

of the window used to hold the canvas component. The top and bottom refer to the top border and

bottom border respectively. The code then creates an anonymous class that implements the

Runnable interface and creates the object resize.

The Event Dispatch Thread is a thread that polls the system event queue for events. Possible events are

the mouse clicks, mouse movements, keyboard events, repaint requests. When an event occurs it is

added to the event queue and handled by the Event Dispatch Thread.

Changing the state (in our case the size) of a Swing component outside the Event Dispatch Thread is

considered unsafe when the component is “being shown and is visible.” We must now change aspects of

our application (e.g. drawing or changing window size) in sync5 with the Event Dispatch Thread.

 if (SwingUtilities.isEventDispatchThread()) {
 try {
 SwingUtilities.invokeAndWait(resize);
 } catch (Exception e) {
 // ignore ...but will be no no if using Sonar!
 }
 } else {
 resize.run();
 }

The above checks to see if we are currently running in the Event Dispatch Thread, if we are then we

execute the SwingUtilitied.invokeAndWait(resize) which “causes the resize.run() to be

executed synchronously on the AWT event dispatching thread. This call will block until all pending AWT

events have been processed and then resize.run() returns. The validate() method at the end of our

resizeToInternalSize() method will just lay out the components in the window.

55 There are exceptions but we will not discuss that in this episode.

